
46 COMMUNICATIONS OF THE ACM | JULY 2022 | VOL. 65 | NO. 7

contributed articles

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 P
E

T
E

R
 C

R
O

W
T

H
E

R
 A

S
S

O
C

I
A

T
E

S

software, cyber-attacks, and AI system
safety.4 Therefore, the question of veri-
fication and validation of AI systems,
and, more broadly, of achieving trust-
worthy AI,39 has begun to demand the
attention of the research community.
We define “verified AI” as the goal of
designing AI systems that have strong,
ideally provable, assurances of correct-
ness with respect to mathematically
specified requirements. How can we
achieve this goal?

In this article, we consider the chal-
lenge of verified AI from the perspective
of formal methods, a field of computer
science and engineering concerned
with the rigorous mathematical speci-
fication, design, and verification of
systems.38 At its core, formal methods
is about proof: formulating specifica-
tions that form proof obligations; de-
signing systems to meet those obliga-
tions; and verifying, via algorithmic
proof search, that the systems indeed
meet their specifications. A spectrum
of formal methods, from specification-
driven testing and simulation to model
checking and theorem proving, are
routinely used in the computer-aided
design of integrated circuits (ICs) and
have been widely applied to find bugs
in software, analyze cyber-physical
systems (CPS), and find security vul-
nerabilities. We review the way for-

AR TIFICIAL INTELLIGENCE (AI) is a term used for
computational systems that attempt to mimic
aspects of human intelligence, including functions
we intuitively associate with intelligence, such as
learning, problem solving, and thinking and acting
rationally—for example, see Russell and Norvig.26 We
interpret the term AI broadly to include closely related
areas such as machine learning (ML). Systems that
heavily use AI, henceforth referred to as AI systems,
have had a significant societal impact in domains that
include healthcare, transportation, finance, social
networking, e-commerce, and education.

This growing societal-scale impact has brought with
it a set of risks and concerns, including errors in AI

Toward
Verified
Artificial
Intelligence

DOI:10.1145/3503914

Making AI more trustworthy with a formal
methods-based approach to AI system
verification and validation.

BY SANJIT A. SESHIA, DORSA SADIGH, AND S. SHANKAR SASTRY

 key insights
	˽ Formal methods promises to be an

important enabler for trustworthy AI,
but to fully realize this promise, the state
of the art in formal methods must be
advanced along multiple dimensions.

	˽ The five main challenges include:
developing languages and algorithms
for environment and data modeling,
abstractions and representations for
complex ML components and systems,
new specification formalisms and
properties for AI systems and data,
scalable computational engines for
automated reasoning, and algorithmic
techniques for trustworthy-by-
construction design.

	˽ This article proposes three principles to
address each challenge, and surveys the
progress toward and opportunities for
achieving verified AI.

http://dx.doi.org/10.1145/3503914

JULY 2022 | VOL. 65 | NO. 7 | COMMUNICATIONS OF THE ACM 47

48 COMMUNICATIONS OF THE ACM | JULY 2022 | VOL. 65 | NO. 7

contributed articles

3.	 The property to be verified, .
The verifier generates a “yes/no” an-

swer as output, indicating whether S
satisfies the property in environment
E. Typically, a “no” output is accompa-
nied by a counterexample, also called an
error trace, which is an execution of the
system that indicates how is falsified.
Some verification tools also include a
proof or certificate of correctness with
a “yes” answer. We take a broad view
of formal methods to include any tech-
nique that uses some aspect of formal
specification, verification, or synthesis.
For instance, we include simulation-
based hardware verification methods
or model-based testing methods for
software since they use formal specifica-
tions or models to guide the process of
simulation or testing.

To apply formal verification to AI
systems, one must be able to represent,
at a minimum, the three inputs S, E,
and in formalisms for which (ideally)
there exist efficient decision proce-

dures to answer the “yes/no” question
described previously. However, as will
be shown, even constructing good rep-
resentations of the three inputs is not
straightforward, let alone dealing with
the complexity of underlying design
and verification problems.

We will illustrate the ideas in this
article with examples from the domain
of semiautonomous driving. Figure 2
shows an illustrative example of an AI
system: a closed-loop CPS comprising
a semiautonomous vehicle, with ML
components, along with its environ-
ment. Specifically, assume the semi-
autonomous “ego” vehicle has an au-
tomated emergency braking system
(AEBS) that attempts to detect and
classify objects in front of it and actu-
ate the brakes when needed to avert
a collision. Figure 2 shows the AEBS
as a system composed of a controller
(automatic braking), a plant (vehicle
sub-system under control, including
other parts of the autonomy stack),

mal methods has traditionally been
applied, identify the unique challeng-
es arising in AI systems, and present
ideas and recent advances towards
overcoming these challenges.

This article seeks to address more
than just specific types of AI compo-
nents, such as deep neural networks
(DNNs), or specific methods, such
as reinforcement learning (RL). It at-
tempts to cover the broad range of AI
systems and their design processes.
Additionally, recognizing that formal
methods provide but one approach
to trustworthy AI, our perspective is
meant to complement those from oth-
er areas. Our views are largely shaped
by problems arising from the use of AI
in autonomous and semiautonomous
systems, where safety and correctness
concerns are more acute, though we
believe the ideas presented here apply
more broadly. This article is written
for formal methods researchers and
practitioners as well as for the broader
computer science community. For the
former, we present our viewpoint on
where the real problems lie and how
formal methods can have the greatest
impact. For the latter, we sketch out
our vision of how formal methods can
be a key enabler for trustworthy AI.

We begin with a brief background of
formal verification, an illustrative ex-
ample, and a summary of the article’s
key ideas. We then outline five chal-
lenges to verified AI, discussing recent
progress and presenting principles to
address them.a

Overview
Figure 1 shows the typical processes for
formal verification, formal synthesis,
and formally guided runtime resilience.
Consider the formal verification pro-
cess, which begins with three inputs:

1.	 A model of the system to be veri-
fied, S.

2.	 A model of the environment, E.

a	 The first version of this article was published
on arXiv in July 2016 in response to a call for
white papers for the 2016 CMU Exploratory
Workshop on Safety and Control for AI. Two
revisions have been completed since. This
latest version reflects the evolution of the au-
thors’ perspective on verified AI. Since 2016,
literature on the topic has grown substantially;
however, per Communications guidelines we
are limited to 40 references, so a comprehen-
sive survey of the topic is out of scope.

Figure 1. Formal methods for verification, synthesis, and runtime resilience.

System
S E

EnvSpec

YES
[+ proof]

NO
[+ counterexample]

Find S s.t. S E
satisfies

Does S E
satisfy ?

Synthesized
System S

Real
Env

Sys S

Runtime
Assurance

E
EnvSpec Spec

Verification Synthesis Runtime Resilience

Runtime
Monitor

Figure 2. Example of a closed-loop cyber-physical system with machine-learning components
(introduced in Dreossi et al.5).

Controller Vehicle
(Plant)

Environment

Sensor Input

Deep Learning-Based Object Detection

JULY 2022 | VOL. 65 | NO. 7 | COMMUNICATIONS OF THE ACM 49

contributed articles

about and properties of input data
must be explicated into environment
models. We distill this dichotomy into
three challenges of environment mod-
eling for AI systems and develop corre-
sponding principles to address them.

Modeling uncertainty. In traditional
uses of formal verification, it is com-
monplace to model the environment as
a nondeterministic process or “distur-
bance” that is subject to constraints.
Such “overapproximated” environ-
ment modeling permits one to con-
servatively capture uncertainty about
the environment without an overly de-
tailed model that can be inefficient to
reason about. However, for AI-based
autonomy, purely nondeterministic
modeling is likely to produce too many
spurious bug reports, rendering the
verification process useless in practice.
As an example, consider modeling the
behavior of environment vehicles for
an autonomous car, where the range
of possible behaviors is so broad that
an accident might always occur if
purely nondeterministic modeling is
employed. Moreover, many AI/ML sys-
tems implicitly or explicitly make dis-
tributional assumptions on data from
or behaviors of the environment, creat-
ing a need for probabilistic modeling.
Since it can be difficult to exactly ascer-
tain the underlying distributions, the
resulting probabilistic model cannot
be assumed to be “perfect,” and uncer-
tainty in the modeling process must be
represented in the model itself.

Probabilistic formal modeling. To
tackle this challenge, we suggest using
formalisms that combine probabilis-
tic and nondeterministic modeling.
Where probability distributions can be
reliably specified or estimated, one can
use probabilistic modeling. Elsewhere,
nondeterministic modeling can be
used to overapproximate environment
behaviors. While formalisms such as
Markov Decision Processes (MDPs) al-
ready provide a way to blend probability
and nondeterminism, we believe that
richer formalisms, such as the para-
digm of probabilistic programming (for
example, Fremont et al.10 and Milch et
al.20), can provide an expressive and pro-
grammatic way to model environments.
We expect that in many cases, such
probabilistic programs will need to be
learned/synthesized (in part) from data.
In this case, any uncertainty in learned

and a sensor (camera), along with a
perception component implemented
using a DNN. The AEBS, when com-
bined with the vehicle’s environment,
forms a closed-loop CPS. The environ-
ment of the ego vehicle comprises both
agents and objects outside the vehicle
(other vehicles, pedestrians, among
others) as well as inside the vehicle—for
instance, a driver. A safety requirement
for this closed-loop system can be infor-
mally characterized as the property of
maintaining a safe distance between the
moving ego vehicle and any other agent
or object on the road. However, there are
many nuances to the specification, mod-
eling, and verification of such a system.

First, consider modeling the envi-
ronment of a semiautonomous vehi-
cle, where there can be considerable
uncertainty even about how many and
which agents are in the environment
(human and nonhuman), let alone
about their attributes and behaviors.
Second, the perceptual tasks which
use AI/ML can be hard, if not impossi-
ble, to formally specify. Third, compo-
nents such as DNNs can be complex,
high-dimensional objects that oper-
ate on complex, high-dimensional in-
put spaces. Thus, even generating the
three inputs S, E, to the formal veri-
fication process in a form that makes
verification tractable is challenging.

Assuming one solves that problem,
then one is presented with the daunt-
ing task of verifying a complex AI-based
CPS like the one in Figure 2, where a
compositional (modular) approach is
essential for scalability and yet difficult

to implement—for example due to the
difficulty of compositional specifica-
tion. Finally, correct-by-construction
design methods hold promise for
achieving verified AI, but they are in
their infancy and crucially rely on ad-
vances in specification and verification.
Figure 3 summarizes the five challenge
areas for verified AI. For each area, we
have distilled the current promising
approaches into three principles for
overcoming that challenge, depicted
as nodes. Edges between nodes show
which principles for verified AI depend
on each other, with a common thread
of dependencies denoted by a single
color; we will recapitulate these depen-
dencies in the “Conclusion.” The rest
of the article elaborates on these chal-
lenges and corresponding principles.

Environment Modeling
The environments in which AI/ML-
based systems operate are generally
complex. For example, consider model-
ing the variety of urban traffic environ-
ments where an autonomous car must
operate. Indeed, AI/ML is often intro-
duced into these systems precisely to
deal with such complexity and uncer-
tainty. Current ML design flows usually
specify environments implicitly, with
data. Many AI systems are designed to
discover and make sense of their envi-
ronment during their operation, as op-
posed to traditional systems designed
for an environment specified a priori.
All formal verification and synthesis,
however, is with respect to an envi-
ronment model. Hence, assumptions

Active,
Data-Driven

Introspective

Hybrid Boolean-
Quantitative

System Level

Specification
Mining

Abstractions

Explanations

Semantic
Representations

Controlled
Randomization

Compositional
Analysis

Quantitative
Semantic
Analysis

Formal
Inductive
Synthesis

Safe Learning
System Design

Runtime
Assurance

Environment
Modeling

Formal
Specification

Scalable
Formal Engines

Correct-by-
Construction

Design

Modeling
Learning Systems

Probabilistic

Figure 3. Summary of the five challenge areas for verified AI, the 15 corresponding
principles proposed to address them, and the connections and dependencies between
them (the same color indicates a common dependency thread).

50 COMMUNICATIONS OF THE ACM | JULY 2022 | VOL. 65 | NO. 7

contributed articles

simple cases,17 although more work is
required to make this practical.

Modeling human behavior. For
many AI systems, such as semiautono-
mous vehicles, human agents are a key
part of the environment and/or system.
Hand-crafted models of humans do
not adequately capture the variability
and uncertainty of human behavior.
On the other hand, data-driven ap-
proaches for modeling human behav-
ior can be sensitive to the expressivity
of the features used by the ML model
and the quality of data. To achieve high
assurance for human-AI systems, we
must address the limitations of current
human modeling techniques and pro-
vide guarantees about their prediction
accuracy and convergence.

Active data-driven modeling. We
believe human modeling requires
an active data-driven approach, with
the model structure and features ex-
pressed in mathematical formalisms
amenable to the use of formal meth-
ods. A critical aspect of human mod-
eling is to capture human intent. We
propose a three-pronged approach:
define model templates/features
based on expert knowledge, use of-
fline learning to complete the model
for design-time use, and learn and up-
date environment models at runtime
by monitoring and interacting with
the environment. For instance, it has
been shown that data gathered from
driving simulators via human subject
experiments can be used to gener-
ate models of human driver behavior
that are useful for verification and
control of autonomous vehicles.27,28
In addition, adversarial training and
attack techniques from computer se-
curity13 can be used in active learning
of human models and can further be
devised to target specific human ac-
tions that lead to unsafe behaviors.
These techniques can help develop
verification algorithms for human-AI
systems.

Formal Specification
Formal verification critically relies on
having a formal specification—a pre-
cise, mathematical statement of what
the system is supposed to do. Coming
up with a high-quality formal specifica-
tion is challenging even for domains in
which formal methods have found con-
siderable success, but there are unique

parameters must be propagated to the
rest of the system and represented in the
probabilistic model. For example, con-
vex MDPs25 provide a way of representing
uncertainty in the values of learned tran-
sition probabilities, with algorithms for
verification and control extended to ac-
count for this uncertainty.

Unknown variables. In the tradi-
tional domains for formal verifica-
tion, such as verifying device drivers,
the interface between the system S
and its environment E is well defined,
and E can only interact with S through
this interface. For AI-based autonomy,
such as the example in the “Overview,”
the interface is imperfect, specified by
sensors and perception components
that only partially and noisily capture
the environment, and it does not cap-
ture all the interactions between S and
E. Not all the environment’s variables
(features) are known, let alone sensed.
Even in restricted scenarios where en-
vironment variables are known, there
is a striking lack of information, espe-
cially at design time, about their evo-
lution. Additionally, modeling sen-
sors such as LiDAR, which represent
the interface to the environment, is a
major technical challenge.

Introspective environment modeling.
We suggest to address this problem
by developing design and verification
methods that are introspective — that
is, they introspect on the system S
itself to algorithmically identify as-
sumptions A about the environment
E that are sufficient to guarantee the
satisfaction of the specification Φ.31
Ideally, A must be the weakest of such
assumptions and must also be efficient
enough to generate at design time and
monitor at runtime over available sen-
sors and other sources of information
about the environment so that miti-
gating actions can be taken when they
are violated. Moreover, if a human op-
erator is involved, one might want A
to be translatable into an explanation
that is understandable, so that S can
“explain” to the human why it may not
be able to satisfy the specification Φ.
Dealing with these multiple require-
ments, as well as the need for good
sensor models, makes introspective
environment modeling a highly non-
trivial problem to solve.31 Preliminary
work has shown that such extraction of
monitorable assumptions is feasible in

We need techniques
to model ML
components
along with their
context so that
semantically
meaningful
properties can be
verified.

JULY 2022 | VOL. 65 | NO. 7 | COMMUNICATIONS OF THE ACM 51

contributed articles

cation mining methods could also be
used to infer human intent and other
properties from demonstrations37 or
more complex forms of interaction
between multiple agents, both human
and AI.

Modeling Learning Systems
In most traditional applications of for-
mal verification, the system S is fixed
and known at design time—for ex-
ample, it is a program, or it is a circuit
described in a programming language
or hardware-description language. The
system-modeling problem is primarily
concerned with reducing the size of S
to a more tractable one by abstracting
away irrelevant details. AI systems lead
to a very different challenge for system
modeling, primarily stemming from
the use of machine learning:

	˲ High-dimensional input space.
ML components used for perception
usually operate over very high-dimen-
sional input spaces. For the illustra-
tive example of in Dreossi et al.,5 each
input RGB image is 1000 x 600 pixels,
contains 2561000×600×3 elements, and in
general the input is a stream of such
high-dimensional vectors. Although
researchers have used formal methods
for high-dimensional input spaces (for
example, in digital circuits), the na-
ture of the input spaces for ML-based
perception is different—not entirely
Boolean, but hybrid, including both
discrete and continuous variables.

	˲ High-dimensional parameter/state
space. ML components such as deep
neural networks have anywhere from
thousands to millions of model param-
eters and primitive components. For
example, state-of-the-art DNNs used
by the authors in instantiations of Fig-
ure 2 have up to 60 million parameters
and tens of layers. This gives rise to a
huge search space for verification that
requires careful abstraction.

	˲ Online adaptation and evolution.
Some learning systems, such as a robot
using RL, evolve as they encounter new
data and situations. For such systems,
design-time verification must either
account for future changes in the be-
havior of the system or be performed
incrementally and online as the learn-
ing system evolves.

	˲ Modeling systems in context. For
many AI/ML components, their speci-
fication is only defined by the context.

aspects of this challenge for AI systems
as we elaborate below.

Hard-to-formalize tasks. Consider
the perception module in Figure 2’s
AEBS controller, which must detect
and classify objects to distinguish ve-
hicles and pedestrians from other en-
tities. Accuracy for this module, in the
classic formal methods sense, requires
a formal definition of each type of road
user and object, which is extremely
difficult, if not impossible. This prob-
lem exists for any implementation
of this perception module, not just
approaches based on deep learning.
Similar problems arise for other tasks
involving perception and communica-
tion, such as natural language process-
ing. How, then, do we specify accuracy
properties for such a module? What
should the specification language be
and what tools can one use to construct
a specification?

End-to-end/system-level specifica-
tions. To address the above challenge,
we change the problem slightly. Rather
than directly attempting a specification
of a hard-to-formalize task, focus first
on precisely specifying the end-to-end
behavior of the AI system. From this
“system-level” specification, one can
derive constraints on the input-output
interface of the hard-to-formalize com-
ponent. These constraints serve as a
component-level specification that is
relevant in the context of the overall AI
system. For our AEBS example (Figure
2), this involves specifying the prop-
erty Φ corresponding to maintaining
a minimum distance from any object
during motion, from which we derive
constraints on the input space of the
DNN capturing a semantically mean-
ingful input space for adversarial anal-
ysis (see Dreossi et al.5).

Quantitative vs. Boolean specifica-
tions. Traditionally, formal specifica-
tions tend to be Boolean, mapping
a given system behavior to “true” or
“false.” However, in AI and ML, speci-
fications are often given as objective
functions specifying costs or rewards.
Moreover, there can be multiple objec-
tives, some of which must be satisfied
together and others that may need to
be traded off against each other in cer-
tain environments. What are the best
ways to unify Boolean and quantitative
approaches to specification? Are there
formalisms that can capture common-

ly discussed properties of AI compo-
nents, such as robustness and fairness,
in a unified manner?

Hybrid quantitative-Boolean specifi-
cations. Boolean and quantitative spec-
ifications both have their advantages:
Boolean specifications are easier to
compose, however objective functions
lend themselves to optimization-based
techniques for verification and synthe-
sis, and to defining finer granularities
of property satisfaction. One way to
bridge this gap is to move to quantita-
tive specification languages, such as
using logics with both Boolean and
quantitative semantics (for example,
metric temporal logic22) or combin-
ing automata with reward functions
for RL.15 Another approach is to com-
bine Boolean and quantitative speci-
fications into a common specification
structure, such as a rulebook,1 where
specifications can be organized in a
hierarchy, compared, and aggregated.
Wing39 has identified several catego-
ries of properties for AI systems, in-
cluding robustness, fairness, privacy,
accountability, and transparency. Nov-
el formalisms, which bridge ideas from
formal methods and ML, are being de-
veloped to model the variants of these
properties including, for instance, no-
tions of semantic robustness.32

Data vs. formal requirements. The
view of “data as specification” is com-
mon in machine learning. Labeled
“ground-truth” data over a finite input
set is often the only specification of
correct behavior. This is very different
from formal methods, where a specifi-
cation, typically given in logic or as au-
tomata, defines a set of correct behav-
iors over all possible inputs. This gap
can be problematic, especially when
the data is limited, biased, or from
non-experts. We need techniques to
formalize properties of data, including
data available at design time and data
that has yet to be encountered.

Specification mining. To bridge this
gap between data and formal specifica-
tion, we suggest using algorithms to in-
fer specifications from data and other
observations—so-called specification
mining techniques. Such methods
could be used for ML components in
general, including for perception com-
ponents, since in many cases it is not
required to have an exact specification
or one that is human-readable. Specifi-

52 COMMUNICATIONS OF THE ACM | JULY 2022 | VOL. 65 | NO. 7

contributed articles

inputs and counterexamples make se-
mantic sense in the context in which
the ML models are used. For example,
techniques that analyze a DNN object
detector against small changes in the
color of cars or time of day are argu-
ably more useful that those that add
noise to a small number of arbitrarily
chosen pixels. Most current methods
(for example, Goodfellow et al.13 or
Liu et al.18) fall short on this count. We
need semantic adversarial analysis7 in
which ML models are analyzed within
the context of the systems they are
part of. A key step is to represent the
semantic feature space modeling the
environment in which the ML system
operates, as opposed to the concrete
feature space which defines the input
space for the ML model. This follows
the intuition that the semantically
meaningful part of the concrete fea-
ture space (for instance, traffic scene
images) form a much lower dimen-
sional latent space compared to the
full concrete feature space. Figure 2’s
semantic feature space is the lower-
dimensional space representing the
3D world around the autonomous
vehicle, whereas the concrete feature
space is the high-dimensional pixel
space. Since the semantic feature
space is lower dimensional, it can be
easier to search over (see, for exam-
ple, Dreossi et al.5 or Huang et al.14).
However, one needs a “renderer” that
maps a point in the semantic feature
space to one in the concrete feature
space. The renderer’s properties, such
as differentiability, can make it easier
to apply formal methods to perform
goal-directed search of the semantic
feature space.

Computational Engines
for Design and Verification
The effectiveness of formal methods
for hardware and software systems
has been driven by advances in un-
derlying “computational engines”—
for instance, Boolean satisfiability
solving (SAT), satisfiability modulo
theories (SMT), and model checking.
Given the scale of AI/ML systems, the
complexity of their environments,
and the new types of specifications
involved, a new class of computa-
tional engines is needed for efficient
and scalable training, testing, design,
and verification. We identify the key

challenges that must be overcome to
achieve these advances.

Dataset design. Data is the funda-
mental starting point for machine
learning. Any quest to improve the
quality of an ML system must improve
the quality of the data it learns from.
How can formal methods help to sys-
tematically select, design, and aug-
ment the data used for ML?

Data generation for ML shares simi-
larities with the problem of test gen-
eration for hardware and software. For-
mal methods approaches have proved
effective for systematic, constraint-
based test generation. However, the
requirements for AI systems are dif-
ferent. The types of constraints can be
much more complex—for example, en-
coding requirements on the “realism”
of data captured using sensors from a
complex environment, such as a traf-
fic situation. We need to generate not
just data items with specific character-
istics (such as tests that uncover bugs),
but an ensemble that satisfies distri-
butional constraints. Data generation
must also meet objectives on dataset
size and diversity for effective train-
ing and generalization. These require-
ments necessitate the development of
a new suite of formal techniques.

Controlled randomization in formal
methods. This problem of dataset de-
sign has many facets. First, one must
define the space of “legal” inputs so
that the examples are well formed ac-
cording to the application semantics.
Secondly, constraints capturing a mea-
sure of similarity with real-world data
are needed. Third, constraints are typi-
cally required on the distribution of the
generated examples to obtain guaran-
tees about convergence of the learning
algorithm to the true concept.

We believe these facets can be ad-
dressed by randomized formal meth-
ods—randomized algorithms for gen-
erating data that are subject to formal
constraints and distribution require-
ments. A new class of techniques, termed
control improvisation,9 holds promise.
An improviser is a generator of random
strings (examples) x that satisfy three
constraints:

	˲ A hard constraint that defines the
space of legal x

	˲ A soft constraint defining how the
generated x must be similar to real-
world examples

For example, verifying the safety of
Figure 2’s DNN-based system requires
a model of its environment. We need
techniques to model ML components
along with their context so that se-
mantically meaningful properties can
be verified.

In recent years, much work has fo-
cused on improving the efficiency with
which tools can verify robustness and
input-output properties of DNNs (see
Liu et al.18 for a recent survey). How-
ever, this is not enough. Advances are
needed in three areas:

Automated abstraction and efficient
representations. Techniques for auto-
matically generating abstractions of
systems have been the linchpins of for-
mal methods, playing crucial roles in
extending the reach of formal methods
to large hardware and software systems.
To address the challenges of very high-
dimensional hybrid-state spaces and
input spaces for ML-based systems, we
need to develop effective techniques to
abstract ML models into simpler mod-
els that are more amenable to formal
analysis. Some promising directions
include using abstract interpretation
to analyze DNNs (for example, Gehr et
al.12), developing abstractions for falsi-
fying cyber-physical systems with ML
components,5 and devising novel repre-
sentations for verification (for instance,
star sets and other examples36).

Explanations and causality. The
task of modeling a learning system can
be simplified if the learner accompa-
nies its predictions with explanations
of how those predictions result from
the data and background knowledge.
While this idea is not new—it has been
investigated by the ML community un-
der terms such as explanation-based
generalization21—there has been a re-
cent renewal of interest in using logic
to explain the output of learning sys-
tems (for example, Jha et al.16). Expla-
nation generation can aid in debug-
ging both designs and specifications at
design time and in synthesizing robust
AI systems for runtime assurance. ML
that incorporates causal and counter-
factual reasoning24 can also help to
generate explanations for use with for-
mal methods.

Semantic feature spaces. The ad-
versarial analysis13 and formal verifi-
cation of ML models is more mean-
ingful when the generated adversarial

JULY 2022 | VOL. 65 | NO. 7 | COMMUNICATIONS OF THE ACM 53

contributed articles

logic falsification (for example, Ng-
hiem et al.22), although they must be
applied to the semantic feature space
for efficiency.6 Such falsification tech-
niques can also be used for the system-
atic, adversarial generation of training
data for ML components.6 Techniques
for probabilistic verification should be
extended beyond traditional formal-
isms, such as Markov chains or MDPs,
to verify probabilistic programs over
semantic feature spaces. Similarly,
work on SMT solving must be extended
to handle cost constraints more effec-
tively—in other words, combining SMT
solving with optimization methods (for
example, Shoukry et al.34).

Compositional reasoning for AI/
ML. For formal methods to scale to
large systems, compositional (modu-
lar) reasoning is essential. In compo-
sitional verification, a large system
(for example, a program) is split into
its components (for example, proce-
dures), each component is verified
against a specification, and then the
component specifications together
entail the system-level specification. A
common approach for compositional
verification is the use of assume-guar-
antee contracts. For example, a pro-
cedure assumes something about its
starting state (pre-condition) and in
turn guarantees something about its
ending state (post-condition). Similar
assume-guarantee paradigms have
been developed for concurrent soft-
ware and hardware systems. However,
these paradigms do not cover AI sys-
tems, in large part due to the chal-
lenges in specifying AI systems as
discussed in the “Formal Specifica-
tion” section. Compositional verifica-
tion requires compositional specifica-
tion—that is, the components must be
formally specifiable. However, as not-
ed in “Formal Specification,” it may
be impossible to formally specify the
correct behavior of a perception com-
ponent. One of the challenges, then,
is to develop techniques for compo-
sitional reasoning that do not rely on
having complete compositional speci-
fications. Additionally, the quantitative
and probabilistic nature of AI systems
requires extending the theory of com-
positional reasoning to quantitative
systems and specifications.

Inferring component contracts. Com-
positional design and analysis of AI sys-

	˲ A randomness requirement defining
a constraint on the output distribution.

Control improvisation theory is still
in its infancy, and we are just start-
ing to understand the computational
complexity and to devise efficient algo-
rithms. Improvisation, in turn, relies on
recent progress on computational prob-
lems such as constrained random sam-
pling and model counting (for instance,
Meel et al.19) and generative approaches
based on probabilistic programming
(for instance, Fremont et al.10).

Quantitative verification. In ad-
dition to the scale of AI systems as
measured by traditional metrics (di-
mension of state space, number of
components, and so on), the types of
components can be much more com-
plex. For instance, autonomous and
semiautonomous vehicles and their
controllers must be modeled as hy-
brid systems, combining both discrete
and continuous dynamics. Moreover,
agents in the environment (humans,
other vehicles) may need to be mod-
eled as probabilistic processes. Finally,
the requirements may involve not only
traditional Boolean specifications on
safety and liveness, but also quantita-
tive requirements on system robust-
ness and performance. Yet, most of the
existing verification methods are tar-
geted toward answering Boolean verifi-
cation questions. To address this gap,
new scalable engines for quantitative
verification must be developed.

Quantitative semantic analysis. The
complexity and heterogeneity of AI
systems means that, in general, formal
verification of specifications (Boolean
or quantitative) is undecidable—for
example, even deciding whether a state
of a linear hybrid system is reachable
is undecidable. To overcome this ob-
stacle posed by computational com-
plexity, one must augment the abstrac-
tion and modeling methods discussed
earlier in this section with novel tech-
niques for probabilistic and quanti-
tative verification over the semantic
feature space. For specification formal-
isms that have both Boolean and quan-
titative semantics, in formalisms such
as metric temporal logic, the formu-
lation of verification as optimization
is crucial to unifying computational
methods from formal methods with
those from the optimization literature,
such as in simulation-based temporal

We need to develop
an understanding
of what can be
guaranteed at
design time, how
the design process
can contribute to
safe operation at
runtime, and how
design-time and
runtime techniques
can interoperate
effectively.

54 COMMUNICATIONS OF THE ACM | JULY 2022 | VOL. 65 | NO. 7

contributed articles

tecture search to produce correct-by-
construction DNNs. Another approach
is based on the emerging theory of
formal inductive synthesis,30 the syn-
thesis from examples of programs that
satisfy formal specifications. The most
common approach to solving a formal
inductive synthesis problem is to use
an oracle-guided approach, in which a
learner is paired with an oracle that an-
swers queries. For the example in Fig-
ure 2, the oracle can be a falsifier that
generates counterexamples showing
how a failure of the learned component
violates the system-level specification.
Finally, the use of theorem proving to
ensure correctness of algorithms used
to train ML models (for example, Sel-
sam et al.29) is also an important step
toward correct-by-construction ML
components.

Design of ML-based systems. A sec-
ond challenge is to design an overall
system comprising both learning and
non-learning components. Several re-
search questions arise. Can we com-
pute safety envelopes within which ML
components can be constrained to op-
erate? Can we design a control or plan-
ning algorithm that can overcome the
limitations of an ML-based perception
component it receives input from?
Can we devise theories of composi-
tional design for AI systems? For ex-
ample, if two ML models are used for
perception on two different types of
sensor data (for instance, LiDAR and
visual images), and each satisfies its
specifications under certain assump-
tions, under what conditions can they
be used together to improve the reli-
ability of the overall system?

Safe learning. A prominent example
of progress on this challenge is the
work on safe learning-based control
(for example, Fisac et al.8). In this ap-
proach, a safety envelope is pre-com-
puted, and a learning algorithm is
used to tune a controller within that
envelope. Techniques are needed for
efficiently computing such safety en-
velopes based on, for example, reach-
ability analysis.35 Similarly, the field of
safe RL has seen remarkable progress
(see Garcia and Fernández11 for a sur-
vey). However, these do not yet fully
address the challenges posed by ML
for perception and prediction—for in-
stance, provably safe, end-to-end, deep
RL has yet to be achieved.

Bridging design time and runtime
for resilient AI. Many AI systems op-
erate in environments that are not
specifiable a priori, as discussed in
the “Environment Modeling” section,
and therefore, there will always be en-
vironments in which we do not have
a provable guarantee of correctness.
Therefore, techniques for achieving
fault tolerance and error resilience at
runtime play an especially crucial role
for AI systems. We need to develop a
systematic understanding of what can
be guaranteed at design time, how the
design process can contribute to safe
and correct operation of the AI system
at runtime, and how the design-time
and runtime techniques can interop-
erate effectively.

Runtime assurance. The literature
on fault-tolerant and dependable
systems offers us with a foundation
to develop techniques for runtime
assurance—that is, runtime verifica-
tion and mitigation techniques. For
example, the Simplex method33 pro-
vides one approach to combining a
complex but error-prone module with
a safe, formally verified backup mod-
ule. Recent techniques for combining
design-time and runtime assurance
methods (for example, Desai et al.3)
have shown how unverified compo-
nents, including those based on AI
and ML, can be wrapped within a run-
time assurance framework to provide
guarantees of safe operation. Howev-
er, these are currently limited to spe-
cific classes of systems, or they require
manual design of runtime monitors
and mitigation strategies. More work
is needed on methods such as intro-
spective environment modeling31 and
synthesis of monitors and safe fall-
back strategies for AI.

The correct-by-construction design
methods discussed here may introduce
overhead that makes it more difficult
to meet performance and real-time re-
quirements. However, we believe that
(perhaps nonintuitively) formal meth-
ods can even help to improve a system’s
performance or energy efficiency, in
the following sense. Conventional per-
formance tuning tends to be context-
independent—for instance, tasks need
to meet deadlines independent of the
environment in which they operate.
However, there may be environments
where an ML model could trade off

tems needs progress on multiple fronts.
First, theories of probabilistic assume-
guarantee design and verification need
to be developed for the semantic spac-
es of such systems, building on some
promising initial work (for example,
Nuzzo et al.23). Second, new tech-
niques for inductive synthesis30 must
be devised to generate assume-guaran-
tee contracts algorithmically to reduce
the specification burden and facilitate
compositional reasoning. Third, to
handle the case of components, such
as perception, that do not have precise
formal specifications, we suggest tech-
niques that infer component-level con-
straints from system-level analysis (for
example, Dreossi et al.5) and use such
constraints to focus component-level
analysis, including adversarial analysis,
on searching the “relevant” part of the
input space.

Correct-by-Construction
Intelligent Systems
In an ideal world, verification would
be integrated with the design process,
so the system is “correct-by-construc-
tion.” For example, verification can be
interleaved with compilation/synthesis
steps, such as in the register-transfer-
level (RTL) design flow common in ICs,
or it can be integrated into synthesis
algorithms to ensure the implementa-
tion satisfies the specification. Can we
devise a suitable correct-by-construc-
tion design flow for AI systems?

Specification-driven design of ML
components. Given a formal specifica-
tion, can we design a machine-learning
component (model) that provably sat-
isfies that specification? This clean-
slate ML component design has many
aspects: (1) design the dataset, (2) syn-
thesize the structure of the model, (3)
generate a representative set of fea-
tures, (4) synthesize hyperparameters
and other aspects of ML algorithm se-
lection, and (5) automate techniques
for debugging ML models or the speci-
fication when synthesis fails.

Formal synthesis of ML components.
Solutions are emerging that address
some of the aspects listed previously.
Properties can be enforced on ML
models using semantic loss functions
(for example, Xu et al.40) or via certified
robustness (for example, Cohen et al.2).
These techniques can be combined
with methods such as neural archi-

JULY 2022 | VOL. 65 | NO. 7 | COMMUNICATIONS OF THE ACM 55

contributed articles

falsification of temporal properties of non-linear
hybrid systems. In Proceedings of the 13th ACM
Intern. Conf. on Hybrid Systems: Computation and
Control (2010), 211–220.

23.	 Nuzzo, P., Li, J., Sangiovanni-Vincentelli, A.L., Xi, Y.,
and Li, D. Stochastic assume-guarantee contracts for
cyber-physical system design. ACM Transactions on
Embedded Computing Systems 18, 1, (Jan. 2019).

24.	 Pearl, J. The seven tools of causal inference, with
reflections on machine learning. Communications of
the ACM 62, 3 (2019), 54–60.

25.	 Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., and
Seshia, S.A. Polynomial-time verification of PCTL
properties of MDPs with convex uncertainties. In
Proceedings of the 25th Intern. Conf. on Computer-
Aided Verification (2013).

26.	 Russell, S.J. and Norvig, P. Artificial Intelligence: A
Modern Approach. Prentice Hall (2010).

27.	 Sadigh, D. et al. Data-driven probabilistic modeling
and verification of human driver behavior. In Formal
Verification and Modeling in Human-Machine Systems,
AAAI Spring Symposium (2014).

28.	 Sadigh, D., Sastry, S., Seshia, S.A., and Dragan, A.D.
Information gathering actions over human internal
state. In Proceedings of the IEEE/RSJ Intern. Conf.
on Intelligent Robots and Systems (2016).

29.	 Selsam, D., Liang, P., and Dill, D.L. Developing bug-free
machine learning systems with formal mathematics.
In Proceedings of the 34th Intern. Conf. on Machine
Learning 70 (2017), 3047–3056.

30.	 Seshia, S.A. Combining induction, deduction,
and structure for verification and synthesis. In
Proceedings of the IEEE 103, 11 (2015), 2036–2051.

31.	 Seshia, S.A. Introspective environment modeling. 19th
Intern. Conf. on Runtime Verification (2019), 15–26.

32.	 Seshia, S.A. et al. Formal specification for deep neural
networks. In Proceedings of the Intern. Symp. on
Automated Technology for Verification and Analysis
(2018), 20–34.

33.	 Sha, L. Using simplicity to control complexity. IEEE
Software 18, 4 (2001), 20–28.

34.	 Shoukry, Y., et al. SMC: Satisfiability modulo convex
optimization. In Proceedings of the 10th Intern. Conf.
on Hybrid Systems: Computation and Control (2017).

35.	 Tomlin, C., Mitchell, I., Bayen, A.M., and Oishi, M.
Computational techniques for the verification of hybrid
systems. In Proceedings of the IEEE 91, 7 (2003),
986–1001.

36.	 Tran, H-D., Xiang, W., and Johnson, T.T. Verification
approaches for learning-enabled autonomous cyber-
physical systems. IEEE Design & Test (Aug. 2020).
https://doi.org/10.1109/MDAT.2020.3015712.

37.	 Vazquez-Chanlatte, M., Jha, S., Tiwari, A., Ho, M.K.,
and Seshia, S.A. Learning task Specifications from
demonstrations. In Advances in Neural Information
Processing Systems 31 (2018), 5372–5382.

38.	 Wing, J.M. A specifier’s introduction to formal
methods. IEEE Computer 23, 9 (Sept. 1990), 8–24.

39.	 Wing, J.M. Trustworthy AI. Communications of the
ACM 64, 10 (2021), 64–71.

40.	Xu, J., Zhang, Z., Friedman, T., Liang, Y., and Van den
Broeck, G. A semantic loss function for deep learning
with symbolic knowledge. In Proceedings of the 35th
Intern. Conf. on Machine Learning (2018), 5498–5507.

Sanjit A. Seshia (sseshia@eecs.berkeley.edu) is a
professor of Electrical Engineering and Computer
Sciences at the University of California, Berkeley, CA, USA.

Dorsa Sadigh is an assistant professor of Computer
Science and Electrical Engineering at Stanford University,
CA, USA.

S. Shankar Sastry is the Thomas Siebel Professor
of Computer Science and professor of Electrical
Engineering and Computer Sciences, BioEngineering, and
Mechanical Engineering at the University of California,
Berkeley, CA, USA.

This work is licensed under a http://
creativecommons.org/licenses/by/4.0/

accuracy for higher efficiency if such
environments are formally character-
ized at design time and monitored at
runtime, and if system operation in
them is formally verified to be safe.
This trade-off can be a fruitful area for
future research.

Conclusion
Taking a formal methods perspective,
we have dissected the problem of de-
signing high-assurance AI systems.
As summarized in Figure 3, we identi-
fied five main challenges for applying
formal methods to AI systems. For
each of these five challenges, we have
formulated three design and verifica-
tion principles which hold promise
for addressing that challenge. The
edges in Figure 3 show the dependen-
cies between these principles. For ex-
ample, runtime assurance relies on
introspective and data-driven environ-
ment modeling to extract monitorable
assumptions and environment models.
Similarly, to perform system-level
analysis, we require compositional rea-
soning and abstraction, where some
AI components may require specifi-
cations to be mined, while others are
generated correct-by-construction via
formal inductive synthesis.

Several researchers, including the
authors, have been working on ad-
dressing these challenges since 2016,
when the original version of this ar-
ticle was published; a few sample ad-
vances are described. We have devel-
oped open-source tools, VerifAI6 and
Scenic,10 which implement techniques
based on the principles described in
this article and have been applied to
industrial-scale systems in the autono-
mous driving and aerospace domains.
These results are but a start and much
more remains to be done. Verified AI
promises to continue to be a fruitful
area for research in the years to come.

Acknowledgments
Our work has been supported in part
by the National Science Foundation
(NSF), the Defense Advanced Re-
search Projects Agency (DARPA), the
Semiconductor Research Corporation
(SRC), and several industry sponsors.
We gratefully acknowledge the many
people with whom our conversations
and collaborations have helped shape
this article.	

References
1.	 Censi, A., Slutsky, K., Wongpiromsarn, T., Yershov, D.,

Pendleton, S., Fu, J., and Frazzoli, E. Liability, ethics,
and culture-aware behavior specification using
rulebooks. In 2019 Intern. Conf. on Robotics and
Automation (ICRA), IEEE, 8536–8542.

2.	 Cohen, J.M., Rosenfeld, E., and Kolter, J.Z. Certified
adversarial robustness via randomized smoothing.
In Proceedings of the 36th Intern. Conf. on Machine
Learning 97 (2019), 1310–1320.

3.	 Desai, A., Ghosh, S., Seshia, S.A., Shankar, N., and
Tiwari, A. SOTER: A runtime assurance framework for
programming safe robotics systems. In IEEE/IFIP
Intern. Conf. on Dependable Systems and Networks
(2019), 138–150.

4.	 Dietterich, T.G. and Horvitz, E.J. Rise of concerns about
AI: Reflections and directions. Communications of the
ACM 58, 10 (2015), 38–40.

5.	 Dreossi, T., Donze, A., and Seshia, S.A. Compositional
falsification of cyber-physical systems with machine
learning components. In Proceedings of the NASA
Formal Methods Conf. (Lecture Notes in Computer
Science) 10227 (2017), 357–372.

6.	 Dreossi, T., Fremont, D.J., Ghosh, S., Kim, E.,
Ravanbakhsh, H., Vazquez-Chanlatte, M., and Seshia,
S.A. VerifAI: A toolkit for the formal design and
analysis of artificial intelligence-based systems. In
31st Intern. Conf. on Computer Aided Verification
(Lecture Notes in Computer Science) 11561 (2017),
432–442.

7.	 Dreossi, T., Jha, S., and Seshia, S.A. Semantic
adversarial deep learning. In 30th Intern. Conf.
on Computer Aided Verification (Lecture Notes in
Computer Science) 10981 (2018), 3–26.

8.	 Fisac, J.F. et al. A general safety framework for
learning-based control in uncertain robotic systems.
IEEE Transactions on Automatic Control 64, 7 (2018),
2737–2752.

9.	 Fremont, D.J., Donzé, A., Seshia, S.A., and Wessel, D.
Control improvisation. In 35th IARCS Annual Conf. on
Foundations of Software Technology and Theoretical
Computer Science (2015), 463–474.

10.	 Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X.,
Sangiovanni-Vincentelli, A.L., and Seshia, S.A. Scenic:
A language for scenario specification and scene
generation. In Proceedings of the 40th annual ACM
SIGPLAN Conf. on Programming Language Design
and Implementation (2019).

11.	 Garcıa, J. and Fernández, F. A comprehensive survey
on safe reinforcement learning. J. of Machine Learning
Research 16, 1 (2015), 1437–1480.

12.	 Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P.,
Chaudhuri, S., and Vechev, M. AI2: Safety and
robustness certification of neural networks with
abstract interpretation. In IEEE Symposium on
Security and Privacy (2018), 3–18.

13.	 Goodfellow, I., McDaniel, P., and Papernot, N. Making
machine learning robust against adversarial inputs.
Communications of the ACM 61, 7 (2018), 56–66.

14.	 Huang, X., Kwiatkowska, M., Wang, S., and Wu, M.
Safety verification of deep neural networks. In Intern.
Conf. on Computer Aided Verification, Springer, (2017),
3–29.

15.	 Icarte, R.T., Klassen, T., Valenzano, R., and McIlraith,
S. Using reward machines for high-level task
specification and decomposition in reinforcement
learning. Intern. Conf. on Machine Learning (2018),
2107–2116.

16.	 Jha, S., Sahai, T., Raman, V., Pinto, A., and Francis, M.
Explaining AI decisions using efficient methods for
learning sparse Boolean formulae. J. of Automated
Reasoning 63, 4 (2019), 1055–1075.

17.	 Li, W., Sadigh, D., Sastry, S.S., and Seshia, S.A.
Synthesis for human-in-the-loop control systems.
In Proceedings of the 20th Intern. Conf. on Tools
and Algorithms for the Construction and Analysis of
Systems (2014), 470–484.

18.	 Liu, C. et al. Algorithms for verifying deep neural
networks. Foundations and Trends in Optimization 4,
3–4 (2021), 244–404.

19.	 Meel, K.S. et al. Constrained sampling and counting:
Universal hashing meets SAT solving. In Beyond NP,
Papers from the 2016 AAAI Workshop, (Feb. 12, 2016).

20.	 Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D.L.,
and Kolobov, A. BLOG: Probabilistic models with
unknown objects. Statistical Relational Learning
(2007), 373.

21.	 Mitchell, T.M., Keller, R.M., and Kedar-Cabelli, S.T.
Explanation-based generalization: A unifying view.
Machine Learning 1, 1 (1986), 47–80.

22.	 Nghiem, T. et al. Monte-Carlo techniques for

Watch the authors discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/
toward-verified-ai

