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software, cyber-attacks, and AI system 
safety.4 Therefore, the question of veri-
fication and validation of AI systems, 
and, more broadly, of achieving trust-
worthy AI,39 has begun to demand the 
attention of the research community. 
We define “verified AI” as the goal of 
designing AI systems that have strong, 
ideally provable, assurances of correct-
ness with respect to mathematically 
specified requirements. How can we 
achieve this goal?

In this article, we consider the chal-
lenge of verified AI from the perspective 
of formal methods, a field of computer 
science and engineering concerned 
with the rigorous mathematical speci-
fication, design, and verification of 
systems.38 At its core, formal methods 
is about proof: formulating specifica-
tions that form proof obligations; de-
signing systems to meet those obliga-
tions; and verifying, via algorithmic 
proof search, that the systems indeed 
meet their specifications. A spectrum 
of formal methods, from specification-
driven testing and simulation to model 
checking and theorem proving, are 
routinely used in the computer-aided 
design of integrated circuits (ICs) and 
have been widely applied to find bugs 
in software, analyze cyber-physical 
systems (CPS), and find security vul-
nerabilities. We review the way for-

AR TIFICIAL INTELLIGENCE (AI)  is a term used for 
computational systems that attempt to mimic 
aspects of human intelligence, including functions 
we intuitively associate with intelligence, such as 
learning, problem solving, and thinking and acting 
rationally—for example, see Russell and Norvig.26 We 
interpret the term AI broadly to include closely related 
areas such as machine learning (ML). Systems that 
heavily use AI, henceforth referred to as AI systems, 
have had a significant societal impact in domains that 
include healthcare, transportation, finance, social 
networking, e-commerce, and education.

This growing societal-scale impact has brought with 
it a set of risks and concerns, including errors in AI 
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 key insights
	˽ Formal methods promises to be an 

important enabler for trustworthy AI, 
but to fully realize this promise, the state 
of the art in formal methods must be 
advanced along multiple dimensions.

	˽ The five main challenges include: 
developing languages and algorithms 
for environment and data modeling, 
abstractions and representations for 
complex ML components and systems, 
new specification formalisms and 
properties for AI systems and data, 
scalable computational engines for 
automated reasoning, and algorithmic 
techniques for trustworthy-by-
construction design.

	˽ This article proposes three principles to 
address each challenge, and surveys the 
progress toward and opportunities for 
achieving verified AI.
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3.	 The property to be verified, .
The verifier generates a “yes/no” an-

swer as output, indicating whether S 
satisfies the property  in environment 
E. Typically, a “no” output is accompa-
nied by a counterexample, also called an 
error trace, which is an execution of the 
system that indicates how  is falsified. 
Some verification tools also include a 
proof or certificate of correctness with 
a “yes” answer. We take a broad view 
of formal methods to include any tech-
nique that uses some aspect of formal 
specification, verification, or synthesis. 
For instance, we include simulation-
based hardware verification methods 
or model-based testing methods for 
software since they use formal specifica-
tions or models to guide the process of 
simulation or testing.

To apply formal verification to AI 
systems, one must be able to represent, 
at a minimum, the three inputs S, E, 
and  in formalisms for which (ideally) 
there exist efficient decision proce-

dures to answer the “yes/no” question 
described previously. However, as will 
be shown, even constructing good rep-
resentations of the three inputs is not 
straightforward, let alone dealing with 
the complexity of underlying design 
and verification problems.

We will illustrate the ideas in this 
article with examples from the domain 
of semiautonomous driving. Figure 2 
shows an illustrative example of an AI 
system: a closed-loop CPS comprising 
a semiautonomous vehicle, with ML 
components, along with its environ-
ment. Specifically, assume the semi-
autonomous “ego” vehicle has an au-
tomated emergency braking system 
(AEBS) that attempts to detect and 
classify objects in front of it and actu-
ate the brakes when needed to avert 
a collision. Figure 2 shows the AEBS 
as a system composed of a controller 
(automatic braking), a plant (vehicle 
sub-system under control, including 
other parts of the autonomy stack), 

mal methods has traditionally been 
applied, identify the unique challeng-
es arising in AI systems, and present 
ideas and recent advances towards 
overcoming these challenges.

This article seeks to address more 
than just specific types of AI compo-
nents, such as deep neural networks 
(DNNs), or specific methods, such 
as reinforcement learning (RL). It at-
tempts to cover the broad range of AI 
systems and their design processes. 
Additionally, recognizing that formal 
methods provide but one approach 
to trustworthy AI, our perspective is 
meant to complement those from oth-
er areas. Our views are largely shaped 
by problems arising from the use of AI 
in autonomous and semiautonomous 
systems, where safety and correctness 
concerns are more acute, though we 
believe the ideas presented here apply 
more broadly. This article is written 
for formal methods researchers and 
practitioners as well as for the broader 
computer science community. For the 
former, we present our viewpoint on 
where the real problems lie and how 
formal methods can have the greatest 
impact. For the latter, we sketch out 
our vision of how formal methods can 
be a key enabler for trustworthy AI.

We begin with a brief background of 
formal verification, an illustrative ex-
ample, and a summary of the article’s 
key ideas. We then outline five chal-
lenges to verified AI, discussing recent 
progress and presenting principles to 
address them.a

Overview
Figure 1 shows the typical processes for 
formal verification, formal synthesis, 
and formally guided runtime resilience. 
Consider the formal verification pro-
cess, which begins with three inputs:

1.	 A model of the system to be veri-
fied, S.

2.	 A model of the environment, E.

a	 The first version of this article was published 
on arXiv in July 2016 in response to a call for 
white papers for the 2016 CMU Exploratory 
Workshop on Safety and Control for AI. Two 
revisions have been completed since. This 
latest version reflects the evolution of the au-
thors’ perspective on verified AI. Since 2016, 
literature on the topic has grown substantially; 
however, per Communications guidelines we 
are limited to 40 references, so a comprehen-
sive survey of the topic is out of scope.

Figure 1. Formal methods for verification, synthesis, and runtime resilience.
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about and properties of input data 
must be explicated into environment 
models. We distill this dichotomy into 
three challenges of environment mod-
eling for AI systems and develop corre-
sponding principles to address them.

Modeling uncertainty. In traditional 
uses of formal verification, it is com-
monplace to model the environment as 
a nondeterministic process or “distur-
bance” that is subject to constraints. 
Such “overapproximated” environ-
ment modeling permits one to con-
servatively capture uncertainty about 
the environment without an overly de-
tailed model that can be inefficient to 
reason about. However, for AI-based 
autonomy, purely nondeterministic 
modeling is likely to produce too many 
spurious bug reports, rendering the 
verification process useless in practice. 
As an example, consider modeling the 
behavior of environment vehicles for 
an autonomous car, where the range 
of possible behaviors is so broad that 
an accident might always occur if 
purely nondeterministic modeling is 
employed. Moreover, many AI/ML sys-
tems implicitly or explicitly make dis-
tributional assumptions on data from 
or behaviors of the environment, creat-
ing a need for probabilistic modeling. 
Since it can be difficult to exactly ascer-
tain the underlying distributions, the 
resulting probabilistic model cannot 
be assumed to be “perfect,” and uncer-
tainty in the modeling process must be 
represented in the model itself.

Probabilistic formal modeling. To 
tackle this challenge, we suggest using 
formalisms that combine probabilis-
tic and nondeterministic modeling. 
Where probability distributions can be 
reliably specified or estimated, one can 
use probabilistic modeling. Elsewhere, 
nondeterministic modeling can be 
used to overapproximate environment 
behaviors. While formalisms such as 
Markov Decision Processes (MDPs) al-
ready provide a way to blend probability 
and nondeterminism, we believe that 
richer formalisms, such as the para-
digm of probabilistic programming (for 
example, Fremont et al.10 and Milch et 
al.20), can provide an expressive and pro-
grammatic way to model environments. 
We expect that in many cases, such 
probabilistic programs will need to be 
learned/synthesized (in part) from data. 
In this case, any uncertainty in learned 

and a sensor (camera), along with a 
perception component implemented 
using a DNN. The AEBS, when com-
bined with the vehicle’s environment, 
forms a closed-loop CPS. The environ-
ment of the ego vehicle comprises both 
agents and objects outside the vehicle 
(other vehicles, pedestrians, among 
others) as well as inside the vehicle—for 
instance, a driver. A safety requirement 
for this closed-loop system can be infor-
mally characterized as the property of 
maintaining a safe distance between the 
moving ego vehicle and any other agent 
or object on the road. However, there are 
many nuances to the specification, mod-
eling, and verification of such a system.

First, consider modeling the envi-
ronment of a semiautonomous vehi-
cle, where there can be considerable 
uncertainty even about how many and 
which agents are in the environment 
(human and nonhuman), let alone 
about their attributes and behaviors. 
Second, the perceptual tasks which 
use AI/ML can be hard, if not impossi-
ble, to formally specify. Third, compo-
nents such as DNNs can be complex, 
high-dimensional objects that oper-
ate on complex, high-dimensional in-
put spaces. Thus, even generating the 
three inputs S, E,  to the formal veri-
fication process in a form that makes 
verification tractable is challenging.

Assuming one solves that problem, 
then one is presented with the daunt-
ing task of verifying a complex AI-based 
CPS like the one in Figure 2, where a 
compositional (modular) approach is 
essential for scalability and yet difficult 

to implement—for example due to the 
difficulty of compositional specifica-
tion. Finally, correct-by-construction 
design methods hold promise for 
achieving verified AI, but they are in 
their infancy and crucially rely on ad-
vances in specification and verification. 
Figure 3 summarizes the five challenge 
areas for verified AI. For each area, we 
have distilled the current promising 
approaches into three principles for 
overcoming that challenge, depicted 
as nodes. Edges between nodes show 
which principles for verified AI depend 
on each other, with a common thread 
of dependencies denoted by a single 
color; we will recapitulate these depen-
dencies in the “Conclusion.” The rest 
of the article elaborates on these chal-
lenges and corresponding principles.

Environment Modeling
The environments in which AI/ML-
based systems operate are generally 
complex. For example, consider model-
ing the variety of urban traffic environ-
ments where an autonomous car must 
operate. Indeed, AI/ML is often intro-
duced into these systems precisely to 
deal with such complexity and uncer-
tainty. Current ML design flows usually 
specify environments implicitly, with 
data. Many AI systems are designed to 
discover and make sense of their envi-
ronment during their operation, as op-
posed to traditional systems designed 
for an environment specified a priori. 
All formal verification and synthesis, 
however, is with respect to an envi-
ronment model. Hence, assumptions 
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simple cases,17 although more work is 
required to make this practical.

Modeling human behavior. For 
many AI systems, such as semiautono-
mous vehicles, human agents are a key 
part of the environment and/or system. 
Hand-crafted models of humans do 
not adequately capture the variability 
and uncertainty of human behavior. 
On the other hand, data-driven ap-
proaches for modeling human behav-
ior can be sensitive to the expressivity 
of the features used by the ML model 
and the quality of data. To achieve high 
assurance for human-AI systems, we 
must address the limitations of current 
human modeling techniques and pro-
vide guarantees about their prediction 
accuracy and convergence.

Active data-driven modeling. We 
believe human modeling requires 
an active data-driven approach, with 
the model structure and features ex-
pressed in mathematical formalisms 
amenable to the use of formal meth-
ods. A critical aspect of human mod-
eling is to capture human intent. We 
propose a three-pronged approach: 
define model templates/features 
based on expert knowledge, use of-
fline learning to complete the model 
for design-time use, and learn and up-
date environment models at runtime 
by monitoring and interacting with 
the environment. For instance, it has 
been shown that data gathered from 
driving simulators via human subject 
experiments can be used to gener-
ate models of human driver behavior 
that are useful for verification and 
control of autonomous vehicles.27,28 
In addition, adversarial training and 
attack techniques from computer se-
curity13 can be used in active learning 
of human models and can further be 
devised to target specific human ac-
tions that lead to unsafe behaviors. 
These techniques can help develop 
verification algorithms for human-AI 
systems.

Formal Specification
Formal verification critically relies on 
having a formal specification—a pre-
cise, mathematical statement of what 
the system is supposed to do. Coming 
up with a high-quality formal specifica-
tion is challenging even for domains in 
which formal methods have found con-
siderable success, but there are unique 

parameters must be propagated to the 
rest of the system and represented in the 
probabilistic model. For example, con-
vex MDPs25 provide a way of representing 
uncertainty in the values of learned tran-
sition probabilities, with algorithms for 
verification and control extended to ac-
count for this uncertainty.

Unknown variables. In the tradi-
tional domains for formal verifica-
tion, such as verifying device drivers, 
the interface between the system S 
and its environment E is well defined, 
and E can only interact with S through 
this interface. For AI-based autonomy, 
such as the example in the “Overview,” 
the interface is imperfect, specified by 
sensors and perception components 
that only partially and noisily capture 
the environment, and it does not cap-
ture all the interactions between S and 
E. Not all the environment’s variables 
(features) are known, let alone sensed. 
Even in restricted scenarios where en-
vironment variables are known, there 
is a striking lack of information, espe-
cially at design time, about their evo-
lution. Additionally, modeling sen-
sors such as LiDAR, which represent 
the interface to the environment, is a 
major technical challenge.

Introspective environment modeling. 
We suggest to address this problem 
by developing design and verification 
methods that are introspective — that 
is, they introspect on the system S 
itself to algorithmically identify as-
sumptions A about the environment 
E that are sufficient to guarantee the 
satisfaction of the specification Φ.31 
Ideally, A must be the weakest of such 
assumptions and must also be efficient 
enough to generate at design time and 
monitor at runtime over available sen-
sors and other sources of information 
about the environment so that miti-
gating actions can be taken when they 
are violated. Moreover, if a human op-
erator is involved, one might want A 
to be translatable into an explanation 
that is understandable, so that S can 
“explain” to the human why it may not 
be able to satisfy the specification Φ. 
Dealing with these multiple require-
ments, as well as the need for good 
sensor models, makes introspective 
environment modeling a highly non-
trivial problem to solve.31 Preliminary 
work has shown that such extraction of 
monitorable assumptions is feasible in 

We need techniques 
to model ML 
components 
along with their 
context so that 
semantically 
meaningful 
properties can be 
verified.
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cation mining methods could also be 
used to infer human intent and other 
properties from demonstrations37 or 
more complex forms of interaction 
between multiple agents, both human 
and AI.

Modeling Learning Systems
In most traditional applications of for-
mal verification, the system S is fixed 
and known at design time—for ex-
ample, it is a program, or it is a circuit 
described in a programming language 
or hardware-description language. The 
system-modeling problem is primarily 
concerned with reducing the size of S 
to a more tractable one by abstracting 
away irrelevant details. AI systems lead 
to a very different challenge for system 
modeling, primarily stemming from 
the use of machine learning:

	˲ High-dimensional input space. 
ML components used for perception 
usually operate over very high-dimen-
sional input spaces. For the illustra-
tive example of in Dreossi et al.,5 each 
input RGB image is 1000 x 600 pixels, 
contains 2561000×600×3 elements, and in 
general the input is a stream of such 
high-dimensional vectors. Although 
researchers have used formal methods 
for high-dimensional input spaces (for 
example, in digital circuits), the na-
ture of the input spaces for ML-based 
perception is different—not entirely 
Boolean, but hybrid, including both 
discrete and continuous variables.

	˲ High-dimensional parameter/state 
space. ML components such as deep 
neural networks have anywhere from 
thousands to millions of model param-
eters and primitive components. For 
example, state-of-the-art DNNs used 
by the authors in instantiations of Fig-
ure 2 have up to 60 million parameters 
and tens of layers. This gives rise to a 
huge search space for verification that 
requires careful abstraction.

	˲ Online adaptation and evolution. 
Some learning systems, such as a robot 
using RL, evolve as they encounter new 
data and situations. For such systems, 
design-time verification must either 
account for future changes in the be-
havior of the system or be performed 
incrementally and online as the learn-
ing system evolves.

	˲ Modeling systems in context. For 
many AI/ML components, their speci-
fication is only defined by the context. 

aspects of this challenge for AI systems 
as we elaborate below.

Hard-to-formalize tasks. Consider 
the perception module in Figure 2’s 
AEBS controller, which must detect 
and classify objects to distinguish ve-
hicles and pedestrians from other en-
tities. Accuracy for this module, in the 
classic formal methods sense, requires 
a formal definition of each type of road 
user and object, which is extremely 
difficult, if not impossible. This prob-
lem exists for any implementation 
of this perception module, not just 
approaches based on deep learning. 
Similar problems arise for other tasks 
involving perception and communica-
tion, such as natural language process-
ing. How, then, do we specify accuracy 
properties for such a module? What 
should the specification language be 
and what tools can one use to construct 
a specification?

End-to-end/system-level specifica-
tions. To address the above challenge, 
we change the problem slightly. Rather 
than directly attempting a specification 
of a hard-to-formalize task, focus first 
on precisely specifying the end-to-end 
behavior of the AI system. From this 
“system-level” specification, one can 
derive constraints on the input-output 
interface of the hard-to-formalize com-
ponent. These constraints serve as a 
component-level specification that is 
relevant in the context of the overall AI 
system. For our AEBS example (Figure 
2), this involves specifying the prop-
erty Φ corresponding to maintaining 
a minimum distance from any object 
during motion, from which we derive 
constraints on the input space of the 
DNN capturing a semantically mean-
ingful input space for adversarial anal-
ysis (see Dreossi et al.5).

Quantitative vs. Boolean specifica-
tions. Traditionally, formal specifica-
tions tend to be Boolean, mapping 
a given system behavior to “true” or 
“false.” However, in AI and ML, speci-
fications are often given as objective 
functions specifying costs or rewards. 
Moreover, there can be multiple objec-
tives, some of which must be satisfied 
together and others that may need to 
be traded off against each other in cer-
tain environments. What are the best 
ways to unify Boolean and quantitative 
approaches to specification? Are there 
formalisms that can capture common-

ly discussed properties of AI compo-
nents, such as robustness and fairness, 
in a unified manner?

Hybrid quantitative-Boolean specifi-
cations. Boolean and quantitative spec-
ifications both have their advantages: 
Boolean specifications are easier to 
compose, however objective functions 
lend themselves to optimization-based 
techniques for verification and synthe-
sis, and to defining finer granularities 
of property satisfaction. One way to 
bridge this gap is to move to quantita-
tive specification languages, such as 
using logics with both Boolean and 
quantitative semantics (for example, 
metric temporal logic22) or combin-
ing automata with reward functions 
for RL.15 Another approach is to com-
bine Boolean and quantitative speci-
fications into a common specification 
structure, such as a rulebook,1 where 
specifications can be organized in a 
hierarchy, compared, and aggregated. 
Wing39 has identified several catego-
ries of properties for AI systems, in-
cluding robustness, fairness, privacy, 
accountability, and transparency. Nov-
el formalisms, which bridge ideas from 
formal methods and ML, are being de-
veloped to model the variants of these 
properties including, for instance, no-
tions of semantic robustness.32

Data vs. formal requirements. The 
view of “data as specification” is com-
mon in machine learning. Labeled 
“ground-truth” data over a finite input 
set is often the only specification of 
correct behavior. This is very different 
from formal methods, where a specifi-
cation, typically given in logic or as au-
tomata, defines a set of correct behav-
iors over all possible inputs. This gap 
can be problematic, especially when 
the data is limited, biased, or from 
non-experts. We need techniques to 
formalize properties of data, including 
data available at design time and data 
that has yet to be encountered.

Specification mining. To bridge this 
gap between data and formal specifica-
tion, we suggest using algorithms to in-
fer specifications from data and other 
observations—so-called specification 
mining techniques. Such methods 
could be used for ML components in 
general, including for perception com-
ponents, since in many cases it is not 
required to have an exact specification 
or one that is human-readable. Specifi-
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inputs and counterexamples make se-
mantic sense in the context in which 
the ML models are used. For example, 
techniques that analyze a DNN object 
detector against small changes in the 
color of cars or time of day are argu-
ably more useful that those that add 
noise to a small number of arbitrarily 
chosen pixels. Most current methods 
(for example, Goodfellow et al.13 or 
Liu et al.18) fall short on this count. We 
need semantic adversarial analysis7 in 
which ML models are analyzed within 
the context of the systems they are 
part of. A key step is to represent the 
semantic feature space modeling the 
environment in which the ML system 
operates, as opposed to the concrete 
feature space which defines the input 
space for the ML model. This follows 
the intuition that the semantically 
meaningful part of the concrete fea-
ture space (for instance, traffic scene 
images) form a much lower dimen-
sional latent space compared to the 
full concrete feature space. Figure 2’s  
semantic feature space is the lower-
dimensional space representing the 
3D world around the autonomous 
vehicle, whereas the concrete feature 
space is the high-dimensional pixel 
space. Since the semantic feature 
space is lower dimensional, it can be 
easier to search over (see, for exam-
ple, Dreossi et al.5 or Huang et al.14). 
However, one needs a “renderer” that 
maps a point in the semantic feature 
space to one in the concrete feature 
space. The renderer’s properties, such 
as differentiability, can make it easier 
to apply formal methods to perform 
goal-directed search of the semantic 
feature space.

Computational Engines  
for Design and Verification
The effectiveness of formal methods 
for hardware and software systems 
has been driven by advances in un-
derlying “computational engines”—
for instance, Boolean satisfiability 
solving (SAT), satisfiability modulo 
theories (SMT), and model checking. 
Given the scale of AI/ML systems, the 
complexity of their environments, 
and the new types of specifications 
involved, a new class of computa-
tional engines is needed for efficient 
and scalable training, testing, design, 
and verification. We identify the key 

challenges that must be overcome to 
achieve these advances.

Dataset design. Data is the funda-
mental starting point for machine 
learning. Any quest to improve the 
quality of an ML system must improve 
the quality of the data it learns from. 
How can formal methods help to sys-
tematically select, design, and aug-
ment the data used for ML?

Data generation for ML shares simi-
larities with the problem of test gen-
eration for hardware and software. For-
mal methods approaches have proved 
effective for systematic, constraint-
based test generation. However, the 
requirements for AI systems are dif-
ferent. The types of constraints can be 
much more complex—for example, en-
coding requirements on the “realism” 
of data captured using sensors from a 
complex environment, such as a traf-
fic situation. We need to generate not 
just data items with specific character-
istics (such as tests that uncover bugs), 
but an ensemble that satisfies distri-
butional constraints. Data generation 
must also meet objectives on dataset 
size and diversity for effective train-
ing and generalization. These require-
ments necessitate the development of 
a new suite of formal techniques.

Controlled randomization in formal 
methods. This problem of dataset de-
sign has many facets. First, one must 
define the space of “legal” inputs so 
that the examples are well formed ac-
cording to the application semantics. 
Secondly, constraints capturing a mea-
sure of similarity with real-world data 
are needed. Third, constraints are typi-
cally required on the distribution of the 
generated examples to obtain guaran-
tees about convergence of the learning 
algorithm to the true concept.

We believe these facets can be ad-
dressed by randomized formal meth-
ods—randomized algorithms for gen-
erating data that are subject to formal 
constraints and distribution require-
ments. A new class of techniques, termed 
control improvisation,9 holds promise. 
An improviser is a generator of random 
strings (examples) x that satisfy three 
constraints:

	˲ A hard constraint that defines the 
space of legal x

	˲ A soft constraint defining how the 
generated x must be similar to real-
world examples

For example, verifying the safety of 
Figure 2’s DNN-based system requires 
a model of its environment. We need 
techniques to model ML components 
along with their context so that se-
mantically meaningful properties can 
be verified.

In recent years, much work has fo-
cused on improving the efficiency with 
which tools can verify robustness and 
input-output properties of DNNs (see 
Liu et al.18 for a recent survey). How-
ever, this is not enough. Advances are 
needed in three areas:

Automated abstraction and efficient 
representations. Techniques for auto-
matically generating abstractions of 
systems have been the linchpins of for-
mal methods, playing crucial roles in 
extending the reach of formal methods 
to large hardware and software systems. 
To address the challenges of very high-
dimensional hybrid-state spaces and 
input spaces for ML-based systems, we 
need to develop effective techniques to 
abstract ML models into simpler mod-
els that are more amenable to formal 
analysis. Some promising directions 
include using abstract interpretation 
to analyze DNNs (for example, Gehr et 
al.12), developing abstractions for falsi-
fying cyber-physical systems with ML 
components,5 and devising novel repre-
sentations for verification (for instance, 
star sets and other examples36).

Explanations and causality. The 
task of modeling a learning system can 
be simplified if the learner accompa-
nies its predictions with explanations 
of how those predictions result from 
the data and background knowledge. 
While this idea is not new—it has been 
investigated by the ML community un-
der terms such as explanation-based 
generalization21—there has been a re-
cent renewal of interest in using logic 
to explain the output of learning sys-
tems (for example, Jha et al.16). Expla-
nation generation can aid in debug-
ging both designs and specifications at 
design time and in synthesizing robust 
AI systems for runtime assurance. ML 
that incorporates causal and counter-
factual reasoning24 can also help to 
generate explanations for use with for-
mal methods.

Semantic feature spaces. The ad-
versarial analysis13 and formal verifi-
cation of ML models is more mean-
ingful when the generated adversarial 
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logic falsification (for example, Ng-
hiem et al.22), although they must be 
applied to the semantic feature space 
for efficiency.6 Such falsification tech-
niques can also be used for the system-
atic, adversarial generation of training 
data for ML components.6 Techniques 
for probabilistic verification should be 
extended beyond traditional formal-
isms, such as Markov chains or MDPs, 
to verify probabilistic programs over 
semantic feature spaces. Similarly, 
work on SMT solving must be extended 
to handle cost constraints more effec-
tively—in other words, combining SMT 
solving with optimization methods (for 
example, Shoukry et al.34).

Compositional reasoning for AI/
ML. For formal methods to scale to 
large systems, compositional (modu-
lar) reasoning is essential. In compo-
sitional verification, a large system 
(for example, a program) is split into 
its components (for example, proce-
dures), each component is verified 
against a specification, and then the 
component specifications together 
entail the system-level specification. A 
common approach for compositional 
verification is the use of assume-guar-
antee contracts. For example, a pro-
cedure assumes something about its 
starting state (pre-condition) and in 
turn guarantees something about its 
ending state (post-condition). Similar 
assume-guarantee paradigms have 
been developed for concurrent soft-
ware and hardware systems. However, 
these paradigms do not cover AI sys-
tems, in large part due to the chal-
lenges in specifying AI systems as 
discussed in the “Formal Specifica-
tion” section. Compositional verifica-
tion requires compositional specifica-
tion—that is, the components must be 
formally specifiable. However, as not-
ed in “Formal Specification,” it may 
be impossible to formally specify the 
correct behavior of a perception com-
ponent. One of the challenges, then, 
is to develop techniques for compo-
sitional reasoning that do not rely on 
having complete compositional speci-
fications. Additionally, the quantitative 
and probabilistic nature of AI systems 
requires extending the theory of com-
positional reasoning to quantitative 
systems and specifications.

Inferring component contracts. Com-
positional design and analysis of AI sys-

	˲ A randomness requirement defining 
a constraint on the output distribution.

Control improvisation theory is still 
in its infancy, and we are just start-
ing to understand the computational 
complexity and to devise efficient algo-
rithms. Improvisation, in turn, relies on 
recent progress on computational prob-
lems such as constrained random sam-
pling and model counting (for instance, 
Meel et al.19) and generative approaches 
based on probabilistic programming 
(for instance, Fremont et al.10).

Quantitative verification. In ad-
dition to the scale of AI systems as 
measured by traditional metrics (di-
mension of state space, number of 
components, and so on), the types of 
components can be much more com-
plex. For instance, autonomous and 
semiautonomous vehicles and their 
controllers must be modeled as hy-
brid systems, combining both discrete 
and continuous dynamics. Moreover, 
agents in the environment (humans, 
other vehicles) may need to be mod-
eled as probabilistic processes. Finally, 
the requirements may involve not only 
traditional Boolean specifications on 
safety and liveness, but also quantita-
tive requirements on system robust-
ness and performance. Yet, most of the 
existing verification methods are tar-
geted toward answering Boolean verifi-
cation questions. To address this gap, 
new scalable engines for quantitative 
verification must be developed.

Quantitative semantic analysis. The 
complexity and heterogeneity of AI 
systems means that, in general, formal 
verification of specifications (Boolean 
or quantitative) is undecidable—for 
example, even deciding whether a state 
of a linear hybrid system is reachable 
is undecidable. To overcome this ob-
stacle posed by computational com-
plexity, one must augment the abstrac-
tion and modeling methods discussed 
earlier in this section with novel tech-
niques for probabilistic and quanti-
tative verification over the semantic 
feature space. For specification formal-
isms that have both Boolean and quan-
titative semantics, in formalisms such 
as metric temporal logic, the formu-
lation of verification as optimization 
is crucial to unifying computational 
methods from formal methods with 
those from the optimization literature, 
such as in simulation-based temporal 

We need to develop 
an understanding 
of what can be 
guaranteed at 
design time, how 
the design process 
can contribute to 
safe operation at 
runtime, and how 
design-time and 
runtime techniques 
can interoperate 
effectively.
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tecture search to produce correct-by-
construction DNNs. Another approach 
is based on the emerging theory of 
formal inductive synthesis,30 the syn-
thesis from examples of programs that 
satisfy formal specifications. The most 
common approach to solving a formal 
inductive synthesis problem is to use 
an oracle-guided approach, in which a 
learner is paired with an oracle that an-
swers queries. For the example in Fig-
ure 2, the oracle can be a falsifier that 
generates counterexamples showing 
how a failure of the learned component 
violates the system-level specification. 
Finally, the use of theorem proving to 
ensure correctness of algorithms used 
to train ML models (for example, Sel-
sam et al.29) is also an important step 
toward correct-by-construction ML 
components.

Design of ML-based systems. A sec-
ond challenge is to design an overall 
system comprising both learning and 
non-learning components. Several re-
search questions arise. Can we com-
pute safety envelopes within which ML 
components can be constrained to op-
erate? Can we design a control or plan-
ning algorithm that can overcome the 
limitations of an ML-based perception 
component it receives input from? 
Can we devise theories of composi-
tional design for AI systems? For ex-
ample, if two ML models are used for 
perception on two different types of 
sensor data (for instance, LiDAR and 
visual images), and each satisfies its 
specifications under certain assump-
tions, under what conditions can they 
be used together to improve the reli-
ability of the overall system?

Safe learning. A prominent example 
of progress on this challenge is the 
work on safe learning-based control 
(for example, Fisac et al.8). In this ap-
proach, a safety envelope is pre-com-
puted, and a learning algorithm is 
used to tune a controller within that 
envelope. Techniques are needed for 
efficiently computing such safety en-
velopes based on, for example, reach-
ability analysis.35 Similarly, the field of 
safe RL has seen remarkable progress 
(see Garcia and Fernández11 for a sur-
vey). However, these do not yet fully 
address the challenges posed by ML 
for perception and prediction—for in-
stance, provably safe, end-to-end, deep 
RL has yet to be achieved.

Bridging design time and runtime 
for resilient AI. Many AI systems op-
erate in environments that are not 
specifiable a priori, as discussed in 
the “Environment Modeling” section, 
and therefore, there will always be en-
vironments in which we do not have 
a provable guarantee of correctness. 
Therefore, techniques for achieving 
fault tolerance and error resilience at 
runtime play an especially crucial role 
for AI systems. We need to develop a 
systematic understanding of what can 
be guaranteed at design time, how the 
design process can contribute to safe 
and correct operation of the AI system 
at runtime, and how the design-time 
and runtime techniques can interop-
erate effectively.

Runtime assurance. The literature 
on fault-tolerant and dependable 
systems offers us with a foundation 
to develop techniques for runtime 
assurance—that is, runtime verifica-
tion and mitigation techniques. For 
example, the Simplex method33 pro-
vides one approach to combining a 
complex but error-prone module with 
a safe, formally verified backup mod-
ule. Recent techniques for combining 
design-time and runtime assurance 
methods (for example, Desai et al.3) 
have shown how unverified compo-
nents, including those based on AI 
and ML, can be wrapped within a run-
time assurance framework to provide 
guarantees of safe operation. Howev-
er, these are currently limited to spe-
cific classes of systems, or they require 
manual design of runtime monitors 
and mitigation strategies. More work 
is needed on methods such as intro-
spective environment modeling31 and 
synthesis of monitors and safe fall-
back strategies for AI.

The correct-by-construction design 
methods discussed here may introduce 
overhead that makes it more difficult 
to meet performance and real-time re-
quirements. However, we believe that 
(perhaps nonintuitively) formal meth-
ods can even help to improve a system’s 
performance or energy efficiency, in 
the following sense. Conventional per-
formance tuning tends to be context-
independent—for instance, tasks need 
to meet deadlines independent of the 
environment in which they operate. 
However, there may be environments 
where an ML model could trade off 

tems needs progress on multiple fronts. 
First, theories of probabilistic assume-
guarantee design and verification need 
to be developed for the semantic spac-
es of such systems, building on some 
promising initial work (for example, 
Nuzzo et al.23). Second, new tech-
niques for inductive synthesis30 must 
be devised to generate assume-guaran-
tee contracts algorithmically to reduce 
the specification burden and facilitate 
compositional reasoning. Third, to 
handle the case of components, such 
as perception, that do not have precise 
formal specifications, we suggest tech-
niques that infer component-level con-
straints from system-level analysis (for 
example, Dreossi et al.5) and use such 
constraints to focus component-level 
analysis, including adversarial analysis, 
on searching the “relevant” part of the 
input space.

Correct-by-Construction 
Intelligent Systems
In an ideal world, verification would 
be integrated with the design process, 
so the system is “correct-by-construc-
tion.” For example, verification can be 
interleaved with compilation/synthesis 
steps, such as in the register-transfer-
level (RTL) design flow common in ICs, 
or it can be integrated into synthesis 
algorithms to ensure the implementa-
tion satisfies the specification. Can we 
devise a suitable correct-by-construc-
tion design flow for AI systems?

Specification-driven design of ML 
components. Given a formal specifica-
tion, can we design a machine-learning 
component (model) that provably sat-
isfies that specification? This clean-
slate ML component design has many 
aspects: (1) design the dataset, (2) syn-
thesize the structure of the model, (3) 
generate a representative set of fea-
tures, (4) synthesize hyperparameters 
and other aspects of ML algorithm se-
lection, and (5) automate techniques 
for debugging ML models or the speci-
fication when synthesis fails.

Formal synthesis of ML components. 
Solutions are emerging that address 
some of the aspects listed previously. 
Properties can be enforced on ML 
models using semantic loss functions 
(for example, Xu et al.40) or via certified 
robustness (for example, Cohen et al.2). 
These techniques can be combined 
with methods such as neural archi-
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accuracy for higher efficiency if such 
environments are formally character-
ized at design time and monitored at 
runtime, and if system operation in 
them is formally verified to be safe. 
This trade-off can be a fruitful area for 
future research.

Conclusion
Taking a formal methods perspective, 
we have dissected the problem of de-
signing high-assurance AI systems. 
As summarized in Figure 3, we identi-
fied five main challenges for applying 
formal methods to AI systems. For 
each of these five challenges, we have 
formulated three design and verifica-
tion principles which hold promise 
for addressing that challenge. The 
edges in Figure 3 show the dependen-
cies between these principles. For ex-
ample, runtime assurance relies on 
introspective and data-driven environ-
ment modeling to extract monitorable 
assumptions and environment models. 
Similarly, to perform system-level 
analysis, we require compositional rea-
soning and abstraction, where some 
AI components may require specifi-
cations to be mined, while others are 
generated correct-by-construction via 
formal inductive synthesis.

Several researchers, including the 
authors, have been working on ad-
dressing these challenges since 2016, 
when the original version of this ar-
ticle was published; a few sample ad-
vances are described. We have devel-
oped open-source tools, VerifAI6 and 
Scenic,10 which implement techniques 
based on the principles described in 
this article and have been applied to 
industrial-scale systems in the autono-
mous driving and aerospace domains. 
These results are but a start and much 
more remains to be done. Verified AI 
promises to continue to be a fruitful 
area for research in the years to come.
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